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Abstract—Several small strain, large deformation plate theories are developed via an asymptotic
expansion of the stresses, strains and displacements in a Hu-Washizu variational principle. Both
the governing equations and the natural boundary conditions are obtained. The governing two-
dimensional plate equations can be obtained from the nonlinear equations governing an elastic
three-dimensional continuum. The boundary conditions cannot be obtained except through the use
of variational methods. Of special interest are Kirchhoff-type moment boundiry conditions, and
in-plune boundary conditions similar to those obtained in thin shell theory.

INTRODUCTION

Large deformation small strain plate theories can be derived from the general kinematics
and equilibrium equations of nonlinear elasticity. Perturbation methods (Simmonds and
Mann, 1986 van Dyke, 1975) can be used to simplify the general equations by separating
the dominant terms from those of lesser importance. For a thin plate, the three-dimensional
nonlincar clasticity equations can be integrated through the plate’s thickness to obtain sets
of two-dimensional cquations as in Berg and Johnson (1989) and Berg (1988). While
the technique of simplifying known general three-dimensional equations via perturbation
methods and asymptotic integration is very powerful, it docs not lead to a systematic
method of obtaining boundary conditions associated with the subsequent two-dimensional
euations.

The most convenient way of deriving boundary conditions associated with two-dimen-
stonal plate equations is through the use of variational methods. Of particular interest
in this investigation are the boundary conditions associated with an inextensible large
deformation plate theory.

Inextensible deformations of shallow elastic shells have been studied by Reissner (1961)
using a variational formulation. His work is restricted to finite deformations and shallow
shells. A second paper by Reissner (1962) also uses a variational formulation to study more
general shells, including inextensible shells, but is restricted to small deformations. Ashwell
(1963) presents the cquilibrium equations of a fictitious edge beam as boundary layer
equations for large deformation of very thin plates. Ashwell assumes there are three force
and three couple components in the edge beam. By various scaling arguments, he shows
that two moment components are negligible, but still retains four unknowns. It is not clear
from Ashwell’s development that the number of boundary layer equations can be further
reduced. Asymptotic expansions are used in the work of Coutris and Monavon (1988). but
transverse displacements are restricted to be of the order of the plate’s thickness. In-plane
displacements are further restricted to be much smaller than the plate’s thickness.

This investigation details the derivation of governing equations and boundary con-
ditions appropriate for the lowest order thin plate theory described in Berg and Johnson
(1989) and Berg (1988). Conditions similar to the Kirchhoff boundary conditions of ordi-
nary plate theory are obtained. As in the Kirchhoff transverse shear boundary condition,
a combination of moment derivatives, transverse shears, in-plane normal stress resultants
and applied tractions are required to vanish on a free surface. A large deformation extension
of the von Karman plate equations is also derived. Three examples demonstrating the type
of problem the different theories govern are also presented.

1401



1402 L. J. BerG
VARIATIONAL FORMULATION

Constder the functional associated with a Hu-Washizu three-field vanational principle
for nonlinear elasticity

E. S.u:t)= | WE)+1S (e"'+% Qe
(E.5.u: ) = ‘, ( 29y 5/\’, 8X, (?.X, EXI

- J (u, — ), dA — f wf, dd — J up dd (1)
o e, .

where ordinary Cartesian tensor notation is used. E is the Green strain tensor, S is the
Piola-Kirchhoff stress tensor of the second kind. and u is the displacement vector. W(E) is
the strain energy function and a circumflex indicates a prescribed field either throughout
the plate’s interior, V. or on its boundary, ¢V, The body force per unit undeformed
volume is f. Assume the reference configuration for the plate is a rectangular paralielepiped.

2E,,> —fiu, dV

The boundary of V, is composed of three disjoint sets: the faces (X, = +h/2) where
tractions g, are prescribed, the edges where tractions 7, are prescribed, and the edges where
displacements 4; are prescribed.

Define the scaling parameter ¢ as

J
,:=L'<< i, I.=0O(L). I =O(L). h=O0(L)

then A, the plate’s thickness, is much smaller than a typical lateral dimension. Greek indices
will take on the values | and 2, while Latin indices will take on the values [, 2 and 3.
Summation will be assumed over repeated Latin or Greek indices. The material coordinates
are rescaled as follows :

X1=L51v X]=1:Léh S‘:a:O(l)

a 1 ¢ |

ox, “rLag, =Lt
0 _ I 0 I )
oxX, eLog, el

Next, assume the displacements i, and 4, have the following asymptotic expansions

(&) = L&) +eul (8) +e2ui(E)+ )
u; = L(l;,o-i’-m;,l +(;2ﬁ'3+ S
Ww=0(), &=0(), m=012,... 2)

The superscript on & is an exponent, but the superscript on the displacement functions
mercly identifies the function with a particular ordering. This will be true of all series
expansions in powers of &. In (2). the displacements have been assumed to be arbitrarily
large to within a rigid body translation. Rigid rotations have not been excluded by the
assumed scaling (2). A prescribed displacement on 9V, is assumed to be the same order as
a displacement in the interior. This is a necessary requirement if the displacement is to be
continuous throughout the closure of V.
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The stresses and loads will be scaled by the load parameter t and will be assumed to
have the following asymptotic expansions:
S, = u(S]+eS,+e S+ )
L=t +ell +6°0+ )

Wp) +ep +epi+ )

=
I

fi= UL )
ST=00. =00, pr=001), fF=01), m=0.1.2,... (&)

The asymptotic series expansion for the surface tractions must start at the order indicated
so the stresses are continuous throughout the closure of V,. Very large surface tractions
cannot be reconciled with very small interior stresses, and still have the interior stresses
appropriately continuous.

Finally, the key assumption is made: the strains are small,

Ei,'=€E,-§,~+EZE,§+“-
E;;" =0(l), m= 1,2.3,... 4

Note that all strain componcnts are scaled the same. In particular, the transverse shear
strains are assumed initially to be of the sume order as the in-planc strains and the transverse
normal strain. This is a very important point : the displucements or strains are not required
to satisfy any particular refationships, other than magnitude scalings.

The first variation of Tl in (1} is required to vanish. Consider the first variation of the
striin energy term

ow . o
().J\ W’(E) dV = J\ ji- (NSE,; +£’(SE,«; + - ‘)t£L3 df, d;z d{;. (5)
L vy OL;

Ll

The partial derivatives in (5) will, in general, depend on E, and consequently on all of the
strain functions defined in (4). Next, we must assume that these partial derivatives can be
written

oW
5'E—=T(Q,(}+EQ,;+‘), 9:720(}), m=0,l‘2, (6)
B,

Clearly, this form can be used for linear elasticity if the elastic modulus is an order larger
than the load scale. The nonlinear elastic consitutive relations in Johnson and Urbanik
(1984) are also of this form.

The variation of I1 can be written as an asymptotic series in ascending powers of ¢
using (2)-(6):

OM = 1611 +6M1° +£'011" +&%011%+ - =0
én’”:O(rLJ). n = -!’0’}"__ (7)

If (7) is satisfied approximately by taking only the first few terms in the sum, the result
will be “ncar” the stationary point of I1. The deviation from the exact stationary point will
be small, and will decrease (perhaps only up to a certain point) as more terms are included
in the asymptotic series. Since (7) is a power series in &, each individual term in the sum
must vanish.

Consider the lowest order approximation to the stationary point



1404 L. J. BerG

ofl- "= {%(552\“,()‘“,0‘ + ‘z]}ll:?}(juf_)};‘fL‘ d:‘ d:: d;:‘ =0 (8)

which in turn implies
(SS?}{U,(_J} U,(.)}} = 0 (9)

pointwise in I, Since the term tn braces is a sum of three squares, each term in the sum
must vanish independently

u'y = 0. {10)
This can be integrated to give
)y £
W(E) = UNED (1)
so the lowest order displacements are constant through the thickness.

The second term in (8) vanishes identically as a result of (10). It is interesting to note
that oIT ' gives us no information about stresses in the interior. Further, there are no
natural boundury conditions, equilibrium cquations or constitutive equations. The Euler
Lagrange equation (10) is in effect a strain-displacement relation.

Equations (10) or (11) are the simplest small strain plate theory. To obtain a higher
order theory, consider the next term in (7):

1 i1l 0 1] +{} N 1 L] ) N 0 0 R -4 4 4
Il = J\ ,_-.S”ll,v‘ll,‘\+3”((),‘+ll,_‘)ll,.‘;+5,‘((),,+ll,vx)ll,‘\}tl, dt,l ds_y dl,}
by
. Vg - .
- J w'pltLt dE dE, (12)
(L

Taking variations, integrating by parts, and collecting terms results in

Sy =0 in ¥, (13)
Oul {(SH (0, + 1)+ 553 +u 1)) 2] =0 in ¥y (14
(5“,“{Si)§(()‘,, +“,"]1)+‘S“\);((S,y +“,I‘});[;:)} =0 ond ‘/”{',Z . (15)

Note the results of (13) arc the same as those of (9). It is a charactenstic of this method
that all previous plate theories occur at any given order. The new results from 311° are (14)
and (13). The + designation in (15) indicates a surface whose undeformed outward normal
is in the positive or negative coordinate direction, respectively.

When (14) is integrated with boundary conditions (15), a condition on the pressures
is obtained :

<0 _ 20

I |:.-+u:)—"[’l|:‘-~<|:>- (16)
This implics that, in order to have a consistent theory, the loads must be “self-equilibrating™.
Because we are interested in more general loadings, in particular, nonself-equilibrating
loads, we take

3, = 0. (17

With this. a relation between transverse shear stresses and transverse normal stresses can
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be obtained in the form of an equilibrium equation from (14) and (15). Discussion of this
relation will be postponed until it appears again in the next order theory.

LOWEST ORDER NONTRIVIAL PLATE THEORY

The next order theory will involve in-plane stresses, but will not have constitutive
relations. [t is, in essence. an inextensible membrane theory.

n = j {%5511‘331‘23‘*‘5;3(@3 +ul Dl + 1850, +ul ) 0 +ul) - 1)
Vo

+ 5100+l July + S ((8 +ul) (S +ul )+l uly)

+ %Sgﬁ((én +HI(.)1)(5:{£+u3{$)‘5:ﬂ)"’j?"tﬂ}tl4’ d:! d:: d‘i}

4 <(hy 0 I gz = [ 3
- f (] —a ) Tl dS, dSy — f w el déy, dés
'ﬂyuu 3

0

—-j (Wlp! +u! pPtL? d&, d&,. (18)
o o

This form is more specific about the element of arca for the prescribed traction and
displacement integrals. The subscript £ is to be treated as a constant, not a free index. It
specifics the direction tangent to the coordinate line. Later, a subscript n will be used to
indicate the dircction normal to the area clement. The subscripts ¢ and n are the only
cxeeptions to the index convention. They are never to be summed, and will always appear
in parentheses.

Once again, we can take variations, integrate by parts and sort out the terms. The
kinematic equations in ¥, at this order are (10) and

(Ba+u YIn+uly)—1=0 (19)
(B3 +u3) (0, +uh) =0 (20)
(. +N.(,)z)((s,/f+“f,’/1)"'5:n = (. 1)

Equations (21) are the inextensibility conditions. Because the displacements have power
series expansions in ¢, there is also a power series expansion for the deformation gradient.
Equations (19), (20) and (21) imply that the lowest order approximation to the deformation
gradient is orthogonal. From (19) and (20) it can be shown (Berg and Johnson, 1989) that
the variation of & through the thickness is linear in &3,

which is somewhat analogous to (11) in that it defines two new functions which depend
only on in-plane coordinates.

The lowest order equilibrium equations at this order are the same as those from (14)
and (15). Making use of (19) and (20) will simplify the relation between transverse shear
and transverse normal stresses, in particular

5?3 = S?s =0 (23)

where (17) has been used. The remaining equilibrium equations in the interior are
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(S (()xz+L:x))ﬂ+(szl3(orz+U101)+S33(013+ Ns+f=0 in¥, (24)
and the natural boundary conditions on the faces are
le}(ét:+L'31)+S.!‘3(613+a11)= iﬁ:l oné} = i% (25)

where (11) and (22) have been used. At this point, it is necessary to integrate through the
plate’s thickness and introduce the stress resultants N, M and L:

12 12
N =J ST ds.. M) =J g déy, LZ’ =J S"'(SJ) dé,, m=0,1,2,...
“r . 1

(26)

The moment resultants A and L will be used later. The equilibrium equations (24) take the
form

(fvi)/f(‘slx + U,',)x)),/{ + ',',“ = 0. 27)

The body force and surface tractions have been combined into a single load variable
12
o= SAS AP A e v m= 00102, (28)
12

It is interesting to note that surface tractions on the faces of the plate are indistinguishable
from averaged body forces in this theory. This is usually assumed to be true in membrane
theories, but is never rigorously justified. The natural boundary conditions are

3

I
1V'(:,»/l(‘5,/: + U:,)/:) =+ J r déy =n' oncV,, . (29)
.

With (20) and (21), (29) can be rewritten

Nopy = (3,4 + Ulp)n = in-plane component of n

0 = (d,; +1/)n) = transverse component of n’ (30)

where in-plane and transverse mean tangent to the deformed plate and normal to the
deformed plate, respectively. The fuct that the transverse component of the applied traction
in the deformed configuration is zero is not a restriction on the way the loads may be
applied. Rather, it is a statcment that the plate deforms in such a way that at the edges, the
midsurtace has rotated so that it is in the plane of the applied loads. Keep in mind that the
length scale assumption prohibits loads which change significantly over distances shorter
than O(L). Lastly, the forced boundury conditions on edges where displacements are
prescribed are

U’ =4 ondV,,. 30

This means that, in order to have a consistent theory, only a membrane-type displacement
condition may be prescribed. Only the displacement on the midsurface may be specified.

Because the equilibrium equittion only involves in-plane components, and the boundary
conditions only allow in-planc components, this theory is truly a membrane theory. This
theory is statically determinate. [t is a special case of membrane shell theory for developable
shells.

While the preceding plate theories are of some interest in their own right, they do not
exhibit all the qualities normally associated with a plate theory. The next theory to be
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presented includes constitutive equations, strain—displacement relations, and both in-plane
and moment stress resultants. Further, nonzero transverse shear stresses will play a role.
The variational principle for this theory is

n = [ {strain energy term — S £+ 183 ;u):uly + 533(8;3 + u )uly

who
+ 8500 +us) (s +ul3) = D+ ulsuly)+ S35((0is + w3 )uls + ulsuly)
+ 85300+ ul s + 833 (0 + 1) (83 +uly) + ulyulsy)
+ SO+l uls + (O + ! s+ uliuly)
+18:5((0 +ul2) Oip +ug) — 0,5) + Sap(Oia + i )iy

—fu) £’} L dg, 4 dE s - J {0 —ay! + (! =iy}l d§, d&y

OV o

- J (W6 +u! 8}l d&,, d&— J {ulp} +u'p! +u} p?lel? dE| dE,. (32)
b b,

We have not been too specific about the *strain energy term™ because we do not know
how to write it down directly. We do, however, know its variation from (5) and (6). If the
variation of (32) is sct equal to zero, and integrated by parts, the governing equations and
boundary conditions of this theory are obtained.

The kinematic equations of this theory are (10), (19). (20) and (21) and the strain-
displacement equations

E‘] = (()',v\‘*“l;,l )ll,?] (33)
213:‘ = ((5:1 + Ul(,)x)ul?.‘ + (5,, + ﬁl" )Ult: + é ]((513 + ﬁul )l7ll,1 (34)
Ely= s+ UU+E3(0.+ ULty = e+ 5k4y (35)

where the notation has been simplified by making an implied symmetry assumption on the
strain tensor as well as using (11) and (22). In (35), in-plane membrane strains and bending
strains have also been identified.

The constitutive equations from the variation of (32) put limits on the form the strain
encrgy function can assume. The transverse normal and transverse shear terms are

Q) =53,=0 (36)
Q=5 = 37

where (17) and (23) have been used. The in-plane terms are
= S (38)

12 172 1:2 22
Ni’/: = J \ ’Q;,/l dé;- Mgﬂ = f ’Q;)ﬂél dé.‘h Lfﬂ = f Q-?ﬂgzi df.\- (38b)

-1/ 12
Additional higher order terms could be defined. if required. Thus the loading assumption

and strain scaling affect the form the constitutive equations may take. The equilibrium
equations and natural boundary conditions of this theory are

(SO + Ul + (S0, + UL+ S8 +a!)) s+ =0 inV, (39)
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(le)i(d:ﬁ+ U:.],,)+S,:3((5,}+1,7,1)+S',)du,f,,).,+(5§x((5,3+§,')+Sf\(($,,+U,l‘),)
+ St + S )+ £ =0 in by, (40)

SIIK((SJ1+('vr:fl);s,“‘(éﬂfﬁvl): tpr[ 0“5: = I% (4l)
S30+a)+SH0,+ U+ St +8hu!, = +£p7 on. =+, (42)

With (41). (39) can be integrated through the thickness to get (27) as the lowest order
membrane equilibrium equation at this order. With (42). (40) can be integrated to give

(N0 + Ul )+ N0 +ah+ Ny Ul + Mol ), +7/) = 0. (43)

A moment equilibrium equation can be obtained by multiplying (39) by I, and integrating
through the thickness :

(A’[i)/f((j:/{ + U:,)/f))_x - Nll t((s,x -+ l?,l ) -_ x\":x(d,,; + (/',‘_)/1) + }-'," = 0 (44)

where, once again, the body force and surface traction have been combined,

SAE ! o=t oim 2 m=0.1,2,... (45)

=

il
(—_‘a
- ta
ts

DT

Equations (27), (43) and (44) are written in terms of components in the reference (unde-
formed) configuration. Since the lowest order deformation gradient is orthogonal. the
cquiltbrium equations can casily be written in terms of components referred to the (lowest
order approximation to the) deformed basis. The three equations in (27) become
?/Lx + '.-',“ (‘5./! + L':.)u) =10
N?;r.;’\'xlﬂ = )':'(‘5n+ﬁ,l)» (46)
The three equations in (44) become
A/IL'/I_[f + }T:) (‘51: + L"’l‘_‘x) = 1\’,‘;
Muykly+ Ny =50, +4,) (47
and the three equations in (43) become
le/l./l + N/Ir \'\':;: + A'I/(Il;-,;- le{i + lt[;l;-’\';lf,,u + ((N}‘i) L‘,l,;!).-,‘ + }':,)(fs.z + L"’:,’x) =)
le\,x - le/r'\'zl/l - .Wi’/,i\','_ K;i, + ((\'/‘1’ L'.‘./r),», + }',“ )3+ 17,“) = (). (48)
In applications, these convected forms of the equilibrium equations are sometimes casier
to usc than the forms given earlier. Equations (30) were also written in terms of the
convected basis.
The natural boundary conditions associated with this theory are (30) and
IV(ln)x + “l(on)/lh'.x‘/i = "1‘ (().Il + L‘l‘.)l’) —"10 Uzl{i(dl/! + b’:‘,’/l) on Pl’()l (49)
where (30) has been used.t This type of boundary condition is obtained in ordinary shell

theory where the curvatures are specified and the reference configuration is not necessarily
flat (Niordson, 1985).

+ There is an error in equation (8.2) in Berg and Johnson (1989) where the factor of 2 should not be present.
as in (49).
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In (49), only the in-plane force boundary condition is given. There are also two moment
boundary conditions which could be obtained directly from the variation of (32), but this
will not result in Kirchhoff-type conditions. In finite deformation plate theory (von Karman
theory), the transverse shear condition is derived from an energy (minimum) principle,
rather than a stationary principle. To obtain Kirchhoff-type transverse shear conditions in
the large deformation nonlinear theory, it is necessary to substitute the known kinematics
into the Hu-Washizu variational principle. In effect, this converts the Hu~Washizu principle
to a principle with constaints (strain—displacement relations) imposed on the fields. The
resulting principle does not apparently have a name associated with it, but is listed as Type
VI by Oden and Reddy (1976):

ne'l = ‘( {Sg'f(én"]’ Ui{.)x)Uifﬁ'{—éJSzoﬁ(ém'}' ng)ﬁ:ﬂ ""'qu;(}url - ;‘t“?}r[‘} dél d:! d:l
"()
- J‘T (W& +u! )L’ d&, dEy. (50)

When variations of (50) are taken, some care must be used in order that only independent
variations of independent functions are taken. From (19). (20) and (21), it can be shown
by direct substitution that there are relations between U7 and &,

(O +a) = e (8, + UL N0 + UL
(S + UMY = 1 (8,0 + U0 + )
(‘5l2+UI?:) = nuk(‘;‘\+‘7/l)(‘).kl +Ul?l) (5')
These follow from the definition of the convected base vectors. Assume e, are a sct of
orthonormal base vectors aligned with the coordinate axes in the reference configuration.
These base vectors will be mapped into a set of convected base vectors h,. Since the lowest
order deformation gradient is orthogonal, the lowest order approximation to the convected
base vectors is the orthonormal set h?. The two sets of orthonormal base vectors ure related
as follows
= ()‘ Ul) h() ()' - | hll
¢ ( m+ :.x) z+( ‘3+ll,) 3
hy = (0 + Ule,
‘3) = ((553+i;l; )eg' (52)
Because the convected buse vectors (at the lowest approximation) are orthonormal, uny
one can be written in terms of the other two via the cross product. It is these cross product

relations that are shown in (51). IT, can be written in terms of only two independent
displacement functions using (51):

I'1\.?1 = j: {S;)ll(éll + Ul‘.}.l)Ulf” + élsl’ﬂ(‘su + U’:(.)x)(nuk (‘S/ | + Lr;.,l )(‘)‘kl + ’A‘:].Z)),/I

-(u! + & e (0, + UG+ UL =00 yeL’ dE, dé, dg,

= | AU+ 18,00, + UL (B2 + UL DR+ UP B 2L 0y, dE5. (53)

P
032 2

Note that, unlike 17, the new principle [13, involves two derivatives of the displacements.
When the variation of this principle is integrated by parts, there will be derivatives of both
displacement variations and stresses in the boundary integral terms. Additionally, the higher
order derivatives in the principle lead to conditions on the twist moment at the corner.
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When the first variation of (53) is integrated by parts, and terms are collected. the following

natural boundary conditions are obtained :

12
j. ’Q‘:s(il ‘h&;) dé,

h[gm) =
L2
Mgu.l)'*'N(tn)J = j‘ (t‘ 'h?)+§3&.§r)'h£1) df;—Ng(,,,U,‘.,((S,_‘ +ar! ) (55)
~12
These are moment boundary conditions analogous to the Kirchhoff natural boundary

conditions of ordinary linear plate theory. Finally, there is a corner condition:
(56)

12

EE R+ RN dE + RS, +0) =0

2MY, + j
-1
Clearly, we should have anticipated that there could have been a concentrated corner force

and included it in the potential energy. The variational principle can be modified to include
(57

this term :
M= —R%".

A VON KARMAN-TYPE THEORY

The next term in the variational principle sum can be written in a straightforward way.
(58)

The resulting strain -displacement equations are (10), (19)-(22), (33) -(35) and
(39

Efy = 0o+ )u)y + s ul

2512! = (5:'3 + ﬂé’ )“3: + (‘Ss: + U:)z )fl,":‘\ + uzfz“j‘
1211 = (61: + Us(,)x)uffi + é!‘:, u:f{i’ (60)
(61)

The constitutive equations are (36)-(38) and
Q. =S,

where, once again, (17) and (23) are used. For simplicity, the material is assumed to be
(62)

linear elastic from this point onward. The linear elastic material assumption, along with
(23), gives
E:J = 0

and further implies that E}, is a linear combination of E}, and E},. With this, analogous
(63)

(7]

i .

Ru
3

to (11) and (22), the &, variation of «; is known:
W= Ul +&yi + g_;_)%

2

25 can be stated explicitly:

Using (63), the &, dependence in E
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Ezzﬂ = {(éu + LISS)USB + %Uxfx :‘fﬁ} + 63 {(‘Si: + U:‘.)z)ﬁjﬁ + Ut‘!xﬁgﬂ}
(&)

2

&) .,

+ {Ou+ Ub)ials+ talsiiy} = ey +Eskip+ —5—4dj5.  (64)

The equilibrium equations associated with theory are (27), (43). (44) and

=3

(N0 +ﬁ,‘)+N,'3a,:+.-¥{,'3u,‘+pr(5,~,,+ Ugﬂ)+~::‘ﬁU¢!ﬂ+Mxlﬂﬂi!li'{"NgﬂUi?B
+Mpials+ Lugiis) , +v7 =0 (65)

which is an in-plane equilibrium equation,

(M0 +a" )+ M55+ Ulp) + MU s + Lils) .~ NS+ )= NH(8,+ U)
- N;.\ﬁtz - M;Jﬁiz - ;3 Ui{x - M:l,?ﬁi{:’{"fll =0 (66)

which is a first moment equation obtained from (40), and
(L Bip+ Ulp)) s = M33(01s + ) — My3 (8 + UL + 77 = 0, (67)

which is a second moment equation obtained from (25), where

~3/2 2

H2 2
5= f Co) oyt bteyo s 4 86 ey -0 (©8)
Natural boundary conditions also follow directly from the variational principle. Each
successive theory will involve higher order moments of the stresses, and associated higher
order kinematics, Presumably, additional higher order theories could be derived.

It is straightforward to show that this theory is a generalization of the von Karman
theory by deriving it as a special case. To obtain the von Karman equations, a new strain
scaling is needed to replace (4). The appropriate strain scaling is

E, = O(s%), (69)
which implics

el =nx}=0. (70)
If the curvatures vanish to lowest order, the plate must remain nearly flat and can only

undergo, to lowest order, rigid body rotation and translation. Assume the boundary con-
ditions prohibit rigid rotation and translation, and consequently take

U'=0 (71
which, using (51), implics
il =0. (72)
These, along with ¢, = 0 give
Usp+Upa =0 (73)

where the symmetry implied in (35) has been written explicitly. Equation (73) can be
integrated to give
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;=0 (74)

where. once again. the boundary conditions are assumed to prohibit any rigid body motion.
Equations (33) and (34). along with (20). give

wia =0, u; =U; =33, (75)
with which (64) can be written
2ejy = UL+ Uj, + UL Uiy (76)
Kip = = Ul an
Az = 0. (78)

Novozhilov (1953) derived a theory similar to this, but was forced to make the ad hoc
assumption that (78) was true. It is now clear that (78) proceeds naturally from the strain
scalings. Equations (76) and (77) are the kinematics assumed in the von Karman theory.
It is now possible to see precisely under what conditions those assumptions are valid.

The constitutive equations (38) will imply that

W= (79)
which in turn, using the cquilibrium equation (27), gives
30 = 0. 80)
7

This places an additional restriction on the loads that can be applied. The remaining
equilibrium equations become

Niat+y/ =0 (81)
and

“”:/U!'*'fxl = NJ,\- }',I\ = Ntn‘ (82)
These cquilibrium equations, along with (76) and (77), form the basic equations of the von
Karman theory. Equations (65) and (66) for higher order stress resultants arce not required
in order to have a consistent theory. A final point worth noting is that it is indeed consistent
to keep (82): when calculating, for example, the maximum principle stress, as in a simple
failure theory.

EXAMPLES

To further demonstrate the nature of these theories, several examples will be presented.
The first is an example of the lowcest order nontrivial theory whose governing equations are
(21) and (27). Let the plate occupy the following domain

h I

N
VAN

-ntR< X, €nR=nlL, —xw<<X,<x, -

t2:
19

and take the loads to be
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I =siné,, y7=0. +I= —cos g, (83)
with the natural boundary conditions
n)=cosé. n?=0. nY=sini, onX,= +nR (84
By substituting into (21) and (27). it can be shown that
Ny=1 N,=N,=
U= =& +siné,. U¥=0, Uj=1l-cos¢, (85)

is a solution to (21) and (27) satisfying the boundary condition (30). This is a case of a very
long flat plate rolled into a cylinder with radius R. The internal pressure is

p=bb = (1+0@EN /173 = (1+ 0. (86)

Note that the internal stresses are O(1) while the applied pressures are O(¢). If

h 2
oh = J xg” d,\'; (87)

Shi2

defines the mean stress o, then (835) and (86) give
R
aqg = (I +()(E)){) h (88)

which is exactly the clementary strength of materials result, with an estimate of the error.

As a second example using the same theory consider lifting a very large thin rectangular
plate by one corner using a concentrated foree at the corner, with gravity acting normal to
the undeformed plate. Since the plate is very large, and for suitable loads, only the region
ncar the corner where the loads are applicd will be bent. The remainder will remain flat,
presumably lying on a flat surface. If the X,- and X.-axis are along two free edges of the
large flat plate occupying the tirst quadrant in the X ,-X, plane and the concentrated load
applied at the origin is

Pe, — —Q—,:(e,+cg) (89)

V2

the deformation will be symmetric in X, and X, It is not difficult to show that the
displacement gradients must be

t=Uly= Ul = Ul =ty = — (1 —cos 0)
n m - -1 l H
M= U(J.z =~ = —il; = — -=-sinl (90)

where (X, X,) is the rotation a given generator has undergone. These are easy to derive
using the finite rotation vector representation of the deformation gradient as in Berg (1988).
The weight per unit area of the plate will be y and will act in the minus X,-direction. The
curvature components can be shown to be
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1 1
Kiy =Ky = —=0,, Ki;=wrlr=-—0, (91)
I /I
A N
and since the curvature tensor must be symmetric,
S +Es co
6=9(s)=9(" ‘) 8 = — (92)
/D [aR)
V32
SO
Kag = 10", {93)

If a r-axis is defined in the direction perpendicular to the s-axis, the new curvature com-
ponents are

Kip=k\=rK,=0, w,=0" (94)

The equilibrium equations can be easily integrated subject to the condition that the
plate is stress-frec on X, = 0 and X, = 0. This results in an equation for 0(s)

50" cos 8 —8 cos 0+25(0) sin@ =0 (93

which is singular at the corner of the plate, s = 0. [tis perhaps possible to solve (95) directly.
but it is more straightforward to consider the net total in-plane (horizontal) force in the
deformed plate

_cos’ O(s)

H(s) = cos ()J. Ne(s, ) dt = =25y (-)—,( \ (96)
__, 5

It is casy to show that (95) implies that the horizontal force is independent of s, subject 1o
the conditions that the curvature and NJ, do not vanish. The horizontal force is known
from (89)

H()=0Q 97y
s0 (96) can be integrated to give

P—ys?
O(s) = tan ™" {—»')\ } (98)

With this, in practice, all the stresses and deflections can be found. Note that whens = /Py,
0(s) must vanish. This is the point where the vertical concentrated force balances the weight
of the bent corner of the plate. At the point where 0(s) vanishes, the horizontal load docs
not vanish, and is presumed to be balanced by friction forces between the very large unbent
part of the plate and its supporting surface. This is a two-dimensional analog of the problem
of lifting a string off a flat surface by a concentrated force at its end.

As a final example, consider the special case of the theory derived from (32) when
u> = 0. This problem was solved by Johnson (1985) where he shows that under this plate-
strain condition, (19)-(21) are satisfied by

14+ U, =cos 0(&), 8, =sin 0(&))
a4l = —sinO0(&)), L+a) =cos (&) (99)

where the variable 8 is not the same as was used in the previous examples. We will also
assume that all deformation and stress variables are independent of &.. From (99) the
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curvature can be calculated, then substituted into (46)
NIB, =0 (100)
which says either the lowest order normal stress vanishes, or the plate remains flat. Assume

the former is true. By combining the in-plane equations from (43), and integrating, the
transverse shear is

Nl =a,sinf+a,cosf (1o

where g, and a, are constants. Compressive axial dead loads are to be applied to the plate’s
edges. so

12
[‘2=-‘=0, j ;I déJ=—P (102)

-2
where P is the dimensionless axial load per unit length. Equation (55) then gives
Nislena = Psin 6. (103)

With this, the moment equilibrium equation (47), along with (101), gives

M}, = Psin. (104)
Finally, for a linear elastic material
M}, = -D@, (105)
and (104) becomes
0‘,,+-gsin0=0 (106)

which is the equation of the elastica.

It is interesting to note that the elastica is a special case of a theory with the strain
scaling (4). To arrive at the von Karman equations, the more restrictive strain scaling (69)
is required. Simmonds (1979) comments that “it is a well-known deficiency of the von
Karman equations that they do not contain as a special case the equations of the elastica™.
It is not so much a defect, but rather inappropriate to expect the von Karman equations
to govern the elastica. To arrive at the von Karman equations, the assumption which
neglects motions akin to those of the elastica is made. This assumption is subtly included
in the von Karman equations’ assumed strain-displacement relation. This demonstrates
the real power of the asymptotic integration method. The assumptions serve to enlighten
rather than to obscure.

DISCUSSION

It is possible to derive the governing equations of the various theories presented by
simply studying the equations of three-dimensional nonlinear elasticity. The advantages of
using the variational formulation are that the natural boundary conditions are also derived,
and that there is a natural ordering to the importance of the theories. When starting with
the governing differential equations, it is not always clear precisely which equations are
required in any given theory. When working with the variational principle. on the other
hand, the grouping of equations into theories occurs quite naturally. For example, it is not
initially obvious that it is completely consistent to have a theory with stresses but not have
any constitutive equations or strains. On the other hand, membrane shell theories are
derived by making just these assumptions. This highlights the importance of this method.

S\s 27-ti-C



1416 L. J. BErG

One 1s able to derive the equations governing the theory based on a reasonable geometric
scaling assumption and an assumption on the material behavior. The limitation to smalt
struins is not oo restrictive since most engineering materials except elastomers cannot
undergo elastic strains of any appreciable magnitude.

Aside from the two assumptions discussed above. there is an additional implicit
assumption on the material behavior. By not introducing an additional material scaling
parameter, matertals which are very strongly anisotropic. such as unidirectional fiber
reinforced composites which have very large variations in stiffness with direction, are not
allowed. This does not eliminate all anisotropic materials. A good example of an anisotropic
material for which the theory is entirely valid is paper, which has a modest variation of
stiffness with direction (Johnson and Urbanik, 1984).

The functional in (1) is written using the second Piola-Kirchholf stress and Green
strain. [t is possible to derive the same basic equations using the first Piola-Kirchhoff stress
and the deformation gradient as conjugate variables. The strain scaling must then be
introduced indirectly, but this presents no fundamental problem. In order 1o define force
and moment resultants analogous to those used in shell theories, it is necessary to introduce
sccond Prola-KirchhofT stresses in the resulting equations. Since the scaled strains appear
dircctly in the formulation based on (1), it scems more natural to use (1) rather than a
functional using the deformation gradient as the strain measure.

In plate and shell theory it is common to invoke the Kirchhofl or Kirchhofl-Love
hypothesis. This provides a set of constraints on the allowable kinematics. In the preceding
development, there was no assumption made regarding any particular form the kinematics
must take. Rather, constraint conditions were derived as part of the analysis. This is a new
feature of this type of theory. Koiter (1960) begins with the assumption that the plate is in
@ state of plance stress, and uses constitutive cquations to argue that the shear strains are
negligible. This s also the approach taken by Berg and Johnson (1989). The theories
presented here are plane stress, but only as a result of the assumption (17) on the functional
form the loads may assume, Further, restrictions on the constitutive cquations are derived
as a result of strain and load scalings, and not assumed « priori. 1t s not necessary to
assume the plate will have Kirchhoff-type kinematics, or to assume that the plate is in a
state of plane stress. In essence, a complicated assumption on the plate’s deformation has
been replaced by some simple ones on the allowable strains and deflections. 1t is certainly
preferable to make an assumption which can be veriticd directly, rather than one which can
be veritied only indirectly.

One final point which needs further discussion is the fact that the two nontrivial theories
presented both include eqns (19), (20) and (21). These equations provide constraints between
the lowest order deformations and the lowest order slopes. 1t a finite element solution of
the nontrivial large deflection theories is to be attempted, the constraints will need to be
satistied either with Lagrange multipliers (stresses), or with penalties (stiffnesses). In either
case. a single element will, in general, have to incorporate up to six nonlinear constraints
{Berg, 1988).

The governing cquations and boundary conditions in this investigation are based on
uniform scalings in both in-plane directions. This gives rise to a theory which is valid in the
interior of the plate. Near the edges of the plate, however, the need for a more general
length scaling normal to the edge is anticipated. This more general asymptotic expansion
of the governing equations gives rise to a boundary layer on the edges of the plate similar
to that derived by Fung and Wittrick {1955). This boundary layer satisfies the function
Ashwell and Reissner seems to have had in mind for their edge beams. Further discussion
of the boundary layer will appear in a future paper.
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